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Abstract. A linear spin-wave analysis of the dimerization of an alternating Heisenberg system
with spinss1 and s2 on a linear chain as well as on a square lattice is presented. Among the
several possible dimerized configurations considered in two dimensions, the plaquette configuration
is found to be energetically the most favoured one. Inclusion of a variable nearest-neighbour
exchange couplingJ (a) = J/a leads to a uniform power-law behaviour—that is to say, the same
δ-dependence is found: (i) in chains as well as in square lattices; (ii) in systems consisting of
different pairs of spinss1 ands2; (iii) for the magnetic energy gain, the energy gap, the energy of
the gapped magnetic excitation mode as well as for the sublattice magnetization; (iv) for all of the
configurations of the square lattice; and (v) over the entire range ofδ (0 6 δ < 1). The variable
exchange coupling also allows the energy of the gapped excitation spectrum to beδ-dependent
even in the linear spin-wave theory.

1. Introduction

Extensive interest is currently being shown in alternating-spin systems consisting of two
sublattices with unequal spin magnitudess1 and s2 with a net non-zero spin per unit cell,
as shown in figure 1. Such systems are realized in bi-metallic chains with the general
formula ACu(pbaOH)(H2O)3·2H2O where pbaOH is 2-hydroxy-1, 3-propylenebis (oxamato)
and A= Mn, Fe, C, Ni [1]. These ferrimagnetic chains are also referred to as alternating or
mixed-spin chains and are regarded as Heisenberg systems [2–6].

Figure 1. A schematic sketch of an alternating-spin chain. The larger and smaller arrows indicate
the larger (s1) and the smaller (s2) spins. The hollow (filled) circles represent the positions of spins
in the undisturbed (dimerized) chain.

Alternating-spin systems have been studied extensively by various techniques: by spin-
wave theory (SWT) [4–10], spin-wave expansion (SWE) [11,12], Monte Carlo (MC) methods
[4, 8–10], the density matrix renormalization group (DMRG) technique [5,10,12], the method
of matrix product (MP) states [3], and by the exact-diagonalization (ED) method [9,12].

For an alternating-spin chain, the zero-temperature ground-state energy and sublattice
magnetization were evaluated using SWT [5, 6, 10], SWE [11], DMRG [5, 6, 10], and QMC
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Table 1. A summary of the ground-state energy per site and sublattice magnetization values
calculated by different methods for alternating-spin chains made up of the three spin systems,
namely(1, 1

2), (
3
2 ,

1
2), and( 3

2 , 1).

Spin Method εg M1 M2

(1, 1
2) MP [3] −0.7245 0.779 −0.279

QMC [3,4] −0.7275 0.793 −0.293
LSWT [4,6] −0.718 0.695 −0.195
DMRG [6] −0.727 09 0.794 28 −0.292 48
SWE [11,12] −0.727 15 0.793 88
MSW [10] −0.7295

( 3
2 ,

1
2) LSWT [6] −0.979 1.315 −0.314

DMRG [6] −0.983 62 1.357 42 −0.357 42
SWE [11,12] −0.9834 1.3666

( 3
2 , 1) LSWT [6] −1.914 1.040 −0.540

DMRG [6] −1.930 96 1.144 27 −0.644
SWE [11,12] −1.9316 1.1461

methods [3]. The results are summarized in table 1. The linear spin-wave theory gives higher
values for the ground-state energy and lower values for the sublattice magnetization compared
to the more exact methods. Recently, Ivanovet al [11, 12] used a second-order spin-wave
expansion to calculate the ground-state energy as well as the sublattice magnetization. Their
results differ by 0.03% for the ground-state energy and 0.2% for the sublattice magnetization
from the DMRG results, as shown in table 1.

The thermal behaviour was also investigated for ferrimagnetic chains [5, 6, 8–10]. Besides
verifying the existence of two (gapped and gapless) excitation modes, the specific heat and
magnetic susceptibility of ferrimagnetic chains were also shown to depend upon temperature
asT 1/2 andT −2 respectively at low temperatures [8, 10]. It was also shown that this model
behaved as a ferromagnet at low temperature, but as a gapped antiferromagnet at moderate
temperatures.

Modified spin-wave theory, which includes the Takahashi constraint, was also shown to
give results in surprisingly good agreement with those from the quantum Monte Carlo method
in the thermodynamic limit of this system [8,10].

Dimerization of chains with spinss1 ands2 (s1> s2) on alternating sites was recently [5,6]
studied the using the Hamiltonian

H = J
∑
n

[
(1 + δ)S1,nS2,n + (1− δ)S2,nS1,n+1

]
(1)

where the total number of sites (or bonds) is 2N and the sum is over the total number of
unit cellsN . δ is the dimerization parameter and is taken to vary between 0 and 1. Linear
spin-wave theory and the DMRG were used [5, 6] to investigate the ground and low-lying
excited states for both uniform and dimerized chains. In both methods the ground state was
found to be ferrimagnetic. One point of focus for us in the study of chains is that the LSW
theory with the Hamiltonian in equation (1) showed that the energy gap atk = 0 in the gapped
mode did not depend on the dimer parameterδ, while the DMRG predicted an almost linear
dependence [5,6]. The DMRG results on chains also show that the transition to a spin–Peierls
state is conditional, in that the ground-state energy depends upon the dimerization parameter
asδν with ν = 2± 0.01.

This has motivated us to investigate a dimerized alternating-spin Heisenberg model by
using a linear spin-wave theory using anansatzof a variable nearest-neighbour exchange
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coupling that was recently used to study dimerization in a uniform (single-spin) Heisenberg
system [13]. We would also like to extend our work to square lattices.

A need for describing nearest-neighbour exchange interaction as dimerization sets in for
two-dimensional lattices was recently discussed [13]. Among the various lattice deformation
modes which allow for dimerization, some require that the effect of the ensuing elongation
or contraction of nearest-neighbour distances be reflected in the nearest-neighbour spin–
spin exchange couplings. Since an exchange integral for a nearest-neighbour distancea is
roughly [14]

J (a) = J

a
(2)

we assume that when the nearest-neighbour distances change froma to a(1 ± δ), the
exchange couplings change fromJ to J/(1± δ). Thus, to linear order inδ, the interaction
J/(1± δ) has the familiar form,J (1± δ). The form in equation (2) allows for incorporating
changes in the nn exchange couplings in various situations of lattice deformations. It was
shown [13] that the logarithmicδ-dependence of various quantities such as the gain in the
magnetic ground-state energy,εg ∼ δν/|ln δ|, in both one- and two-dimensional lattices, can
also be a result of using this variable nearest-neighbour spin–spin exchange coupling. The
form in equation (2) gives a logarithmic dependence not just over theδ→ 0 regime, but also
over the entire range ofδ from 0 to 1. In what follows, we shall use for the exchange interaction
the form in equation (2).

In this paper we will study alternating-spin systems formed with different pairs of spin
values: 1

2, 1, and 3
2, using a zero-temperature linear spin-wave theory. We have considered

three alternating-spin systems from these spin values:(1, 1
2) (denotings1 = 1 ands2 = 1

2);
( 3

2,
1
2); and( 3

2, 1). We would like to see the effect of including the variable nearest-neighbour
exchange coupling on theδ-dependence of the physical quantities such as the gain in magnetic
energy, the sublattice magnetization, and the energies of the excitation modes in both one
and two space dimensions and for different spin systems. We would also like to see whether
it gives rise to aδ-dependence of the gapped excitation energy mode. In section 2 we will
study these three alternating-spin systems for a Heisenberg linear chain using the variable
nearest-neighbour exchange coupling. The energy and magnetization of such systems will
be computed using LSW theory. Critical exponents of the dimer alternating chains will also
be calculated. We shall then study alternating-spin systems on a square lattice for several
proposed dimer configurations in section 3.

The question of frustration in a ferrimagnetic chain or a ladder due to an antiferromagnetic
second-neighbour interaction has also received some attention recently. It was shown that a
strong frustration leads to the disappearance of the long-range ferrimagnetic order through
a discontinuous transition to a singlet state [12, 15, 16]. It was also shown that the spin-
wave theory can predict realistic results for a frustrated system at least for the case of weak
frustration [12]. We shall attempt to see the effect of the variable nearest-neighbour exchange
interaction on weakly frustrated chains and square lattices in a future publication.

2. The one-dimensional alternating system

The dimer alternating Hamiltonian on a chain with two spinss1 ands2 can be rewritten, using
the variable nearest-neighbour exchange coupling defined in equation (2), as

H =
∑
i

[
J

1 + δ
S1,2iS2,2i+1 +

J

1− δ S2,2i+1S1,2i+2

]
. (3)



468 A Al-Omari and A H Nayyar

A linear spin-wave analysis is usually performed with the help of Holstein–Primakoff
(HP) transformations to bosonic spin-deviation operators. For the two sublattices, the HP
transformations are: for spins1,

S+
1,n = (2s1− a†

nan)
1/2an (4a)

S−1,n = a†
n(2s1− a†

nan)
1/2 (4b)

Sz1,n = s1− a†
nan (4c)

and for the second sublattice, with spins2,

S+
2,n = b†

n(2s2 − b†
nbn)

1/2 (5a)

S−2,n = (2s2 − b†
nbn)

1/2bn (5b)

Sz2,n = b†
nbn − s2 (5c)

wheresi is the magnitude of the spin on sublatticei. A linearized Hamiltonian is obtained by
substituting HP transformations into equation (3), and keeping terms up to the quadratic order
in the spin-deviation operatorsa andb. The linearized Hamiltonian in Fourier-transformed
variables is

H =
∑
k

[
A1a

†
kak +A2b

†
kbk +B(k)(a†

kb
†
k + bkak) +C

]
(6)

with

A1 = Jps2 (7a)

A2 = Jps1 (7b)

B(k) = 3k

√
s1s2 (7c)

C = −Jps1s2. (7d)

Here

3k =
√
(Jp cos(k))2 + (Jm sin(k))2 (8)

Jp = J

1− δ2
(9)

and

Jm = Jpδ. (10)

The linearized Hamiltonian in equation (6) can be diagonalized using Bogoliubov trans-
formations:

ak = ukαk + vkβ
†
k (11a)

bk = ukβk + vkα
†
k (11b)

to

H̃ =
∑
k

[
εg +E1(k)α

†
kαk +E2(k)β

†
k βk

]
(12)

where the coefficientsuk, vk are constrained by the conditionu2
k − v2

k = 1, αk andβk are the
normal-mode boson operators,E1(k) andE2(k) are the energies of the two excitation modes,
andεg is the ground-state energy per site, withu(k) andv(k) defined as

u(k) =
√
A1 +A2 + ξk

2ξk
(13a)
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v(k) =
√
A1 +A2 − ξk

2ξk
(13b)

ξk =
√
(A1 +A2)2 − 4B(k)2. (13c)

The two excitation modes are

E1(k) = (A1− A2 + ξk)/2 (14a)

E2(k) = (A2 − A1 + ξk)/2. (14b)

It is easy to see thatE1 is the gapless mode andE2 has a gap.
The ground-state energy per siteεg is given by

εg = C − A1− A2 +
∑
k

ξk (15)

and the staggered magnetizations in the two sublattices corresponding to the spinss1 ands2
respectively are

M1 = S1− 〈D〉 (16a)

M2 = 〈D〉 − S2 (16b)

where〈D〉 = 〈a†
i ai〉 = 〈b†

j bj 〉 is the average taken in the ground state, which is the Néel state,
at zero temperature. This average of spin-deviation operators can be determined from

〈D〉 = 1

N

∑
k

v2(k) (17)

with k running over half of the Brillouin zone.
For the three kinds of alternating-spin chain, referred to as(1, 1

2), (
3
2,

1
2), and( 3

2, 1), the
ground-state energy, the excitation energies, and the magnetization can now be calculated as
functions of the dimerization parameterδ. Previous calculations invariably took spin–spin
exchange couplings alternately asJ (1± δ), which, as mentioned above, can be taken as an
expansion of the interaction in equation (2) to the first order inδ, implying that the results
are valid only in the critical regime whereδ → 0. The advantage of taking the variable
nearest-neighbour exchange coupling is that the results will then be valid also in the limit
whereδ→ 1.

The ground-state energiesεg per site for undimerized chains,δ = 0, were found, as
expected, to be the same as those found earlier [6] for the three systems. After including
dimerization, our calculations also confirm that the ground-state energy of all three systems
described above decreases withδ. This is shown in figure 2, where the energy gainεg(δ)−εg(0)
is plotted againstδ. Numerical fitting shows that, as against earlier results, the magnetic energy
gainεg(δ)−εg(0) has a logarithmic dependence onδ, δν/|ln δ|, for the three systems discussed
here, with values ofν between 1.4 and 1.6 over the entire range 06 δ < 1. Figure 2 shows
that the chain( 3

2, 1) has higher gain than the other two systems.
As expected, our calculations also find two branches of the excitation spectrum, one

gapless and the other with a gap atk = 0, for the three systems.
As stated above, the LSW theory with the spin–spin exchange couplingJ (1± δ) in the

presence of dimerization allowed noδ-dependence of the energy gap in the second mode, while
the DMRG method found an almost linearδ-dependence for these spin systems [5,6]. We find
that on including a variable nearest-neighbour coupling constant defined in equation (2), the
spin-wave theory also allows for aδ-dependent energy gap

1(δ) = E2(δ)− εg(δ)
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Figure 2. The magnetic energy gainεg(δ) − εg(0) versus the dimerization parameterδ for a 1D
alternating-spin chain over the full range of the dimerization parameter, 06 δ < 1.

in the second mode. This is because theδ-dependent terms do not now cancel out for the
gapped excitation mode atk = 0 as they did with the couplingJ (1± δ). The dependence is
found to follow the same logarithmic behaviour,δν/|ln δ|, as the ground-state energy, withν
varying between 1.4 and 1.6 over the entire range 06 δ < 1. This is true for all three spin
systems defined here, and is larger for the( 3

2, 1) system than the other two.
The staggered magnetizationM(δ)was also found to follow the logarithmicδ-dependence

up to δ 6 0.5, but follows a different behaviour forδ > 0.5. M1(δ) is shown against
dimerization in figure 4 for the three systems. Again we see, from figure 4, that the chain with
( 3

2, 1) has a higher value of magnetization than the other two systems (see figure 3).
It is worth mentioning here that by using the coupled-cluster method [13], we had found

that the ground-state energy and the staggered magnetization of a spin-half Heisenberg chain
follow the same logarithmic behaviour using the variable exchange coupling defined in equation
(2) for both small and large values of the dimerizationδ. This gives us more confidence in the
results that we have obtained from LSW theory.

3. The two-dimensional alternating Hamiltonian

The dimerization on two-dimensional lattices differs from that on chains. There are several
ways in which distortions of a square lattice can occur, each one of the possible configurations
giving a different dependence of the ground-state energy on the dimerization parameter [13].

We will use some of these configurations, illustrated in figure 5, to study the alternating-
spin square lattices. The alternating dimerized Hamiltonian for a two-dimensional system can
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Figure 3. Theδ-dependence of the energy gap as dimerization sets in for different alternating-spin
chains.

Figure 4. Theδ-dependence of the staggered magnetization for one of the two sublattices,S1, for
the three alternating-spin chains.
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(a)

(b)

Figure 5. Five configurations for the dimerization of a square lattice: (a) a columnar configuration
caused by a longitudinal(π, 0) static phonon; (b) a staggered configuration caused by a(π, π)

static phonon with polarization along thex-direction; like in (a), the dimerization occurs along one
direction only, but the sequence of alternate couplings itself alternates along the other direction;
(c) dimerization along both of the directions, caused by(π, 0) and (0, π) phonons, making a
plaquette of four nearest-neighbour spins; (d) again, dimerization along both of the directions, but
taken staggered along the vertical direction; (e) another staggered dimerization that is caused by
a longitudinal(π, π) phonon. The large arrow belongs to the first sublattice and the short one
belongs to second sublattice. Also, the open circles indicate the square-lattice sites and the solid
ones show the dimerized lattice.

be written in general as

H =
√
N∑
i,j

∑
µ=±1

[
Jx,µS1,i,j · S2,i+µ,j + Jy,µS1,i,j · S2,i,j+µ

]
(18)

where the indices 1 and 2 on the spin vectors refer to the two sublattices with spins of magnitude
s1 ands2. For reasons described earlier, we use variable nearest-neighbour exchange couplings.
These are defined for different configurations as follows.
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(c)

(d)

Figure 5. (Continued)

Configuration (a):

Jx,µ = J

(1 +µδ)
' J (1− µδ)

Jy,µ = J.
Configuration (b):

Jx,µ = J

(1 +µδ)
' J (1− µδ)

Jy,µ = J√
1 + δ2

' J
(

1− δ
2

2

)
.

Configuration (c):

Jx,µ = Jy,µ = J

(1 +µδ)
' J (1− µδ).

Configuration (d):

Jx,µ = J

(1 +µδ)
' J (1− µδ)

Jy,µ = J√
δ2 + (1 +µδ)2

' J
(

1− µδ −
(

1− µ
2

2

)
δ2

)
.
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(e)

Figure 5. (Continued)

Configuration (e):

Jx,µ = Jy,µ = J√
δ2 + (1 +µδ)2

' J
(

1− µδ −
(

1− µ
2

2

)
δ2

)
.

We would like to investigate the five configurations resulting from dimerization of a square
lattice in order to see

(a) which one of these leads to the largest gain in magnetic energy as the dimerization sets in,
(b) whether the use of variable exchange coupling leads to a single power-law behaviour valid

for the entire range ofδ, and how the law differs from that in the case of chains,
(c) theδ-dependence of the second mode of excitationE2,
(d) the behaviour of the staggered magnetization, and
(e) the generality of these investigations as regards the three spin systems discussed here.

The linear spin-wave analysis follows the same procedure as for the chain above. The
same equations are applicable in this case, but the various coefficients entering the theory now
have the following values:

A1 = Jps2 (19a)

A2 = Jps1 (19b)

B(k) = 0(k)√s1s2 (19c)

C = −Jps1s2 (19d)

where

0(k) =
√
(Jpx cos(kx) + Jpy cos(ky))2 + (Jmx sin(kx) + Jmy sin(ky))2

and

Jp = (Jx,+1 + Jx,−1 + Jy,+1 + Jy,−1)/4

Jpx = (Jx,+1 + Jx,−1)/4

Jpy = (Jy,+1 + Jy,−1)/4

Jmx = (Jx,+1− Jx,−1)/4

Jmy = (Jy,+1− Jy,−1)/4.
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(a)

(c)

Figure 6. The gain in magnetic energyεg(δ)− εg(0) as dimerization sets in with increasingδ for
the five configurations of a square lattice over the range 06 δ < 1 for (a) spin(1, 1

2), (b) spin
( 3

2 ,
1
2), and (c) spin( 3

2 , 1).
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(b)

Figure 6. (Continued)

The ground-state energyεg(δ) defined in equation (15), the energies of the two excitation
modesEi(k) in equation (14), and the staggered magnetizationM(δ) defined in equations (19)
can now be calculated as functions of the dimerization parameterδ.

Table 2. The ground-state energy per site and the staggered magnetization of the undimerized
alternating-spin square lattice for the three spin systems as calculated in the linear spin-wave
theory.

Spin system εg M1 M2

(1, 1
2) −1.2 0.8907 −0.3907

( 3
2 ,

1
2) −1.7158 1.4241 −0.4241

( 3
2 , 1) −3.3709 1.3597 −0.835 97

The ground-state energyεg(δ = 0) is found to be−1.2,−1.7158, and−3.3709 for
the three spin systems(1, 1

2), (
3
2,

1
2), and( 3

2, 1) respectively. The staggered magnetization
M1 {M2} on the first{second} sublattice is 0.8907{−0.3907}, 1.4241{−0.4241}, and 1.3597
{−0.8597} for the three systems. These values are listed in table 2.

Our calculations confirm that, like for a chain, the gain in magnetic energy increases with
δ in all of the proposed configurations. This is shown in figure 6, where the energy gain
εg(δ) − εg(0) is plotted againstδ for the five configurations. It also shows that the plaquette
configuration of figure 5(c) is energetically the most favourable state, while there is hardly
a discernible difference among the configurations (a), (b), and (d). It is also interesting to
note that the magnetic energy gain under dimerization of an alternating-spin square lattice also
varies asδv/|ln δ| with ν = 1.4–1.6 over the entire range 06 δ < 1, exactly as in the case of
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(a)

(b)

Figure 7. The dependence of the energy gap1 onδ for the five dimerization configurations of the
alternating square lattices for (a) spin(1, 1

2), (b) spin( 3
2 ,

1
2), and (c) spin( 3

2 , 1).
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(c)

Figure 7. (Continued)

a chain. This is singularly an effect of taking the variable exchange coupling defined above.
Theδ-dependence of the energy gap,1(δ) = E2(δ) − εg(δ), for the five configurations

is shown in figure 7, showing greater stabilization of the dimerized state with increasingδ.
We also find that, like the magnetic energy gain, the energy gap increases withδ asδv/|ln δ|
in the small-δ regime for all five configurations withν = 1.4–1.6. The configurations (a)–
(d) also have the same dependence onδ over the entire range ofδ. The difference between
the dimerization of a square lattice for these configurations is again markedly brought out in
figure 7.

Our calculations give staggered magnetization for the undimerized alternating-spin square
latticeM1(δ = 0) = 0.8907, 1.4241, and 1.3597 andM2(δ = 0) = −0.3907,−0.4241, and
−0.8597 for (1, 1

2), (
3
2,

1
2), and( 3

2, 1) respectively. As dimerization sets in, magnetization
decreases in all of the configurations that we have chosen, as shown in figure 8. This is also
the case for the entire range 06 δ < 1, except in the case of configuration (e) for which the
magnetization rises again afterδ > 1

2.
Configuration (e) is peculiar in the sense thatδ = 1

2 is a special point for it; the shorter
bond length is symmetric about this point, having a minimum value of 1/

√
2. At this point

the distortions give rise to a rectangular lattice with sides
√

2 and 1/
√

2. The energy gain
increases withδ up toδ = 1

2, and then decreases.
For all five configurations, we found that the magnetization also varies asδν/|ln δ| in

the small-δ regime with the exponentν = 1.4–1.6, exactly like the energy gain and the
energy gap. However, while for configurations (a)–(d) over the full range 06 δ < 1 the
magnetization follows the same power law with the exponentsν = 1.4–1.6, configuration (e)
shows a distinctly different behaviour in this regime.

In summary, we have studied the spin–Peierls dimerization of an alternating-spin
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(a)

(b)

Figure 8. Theδ-dependence of the staggered magnetization of an alternating-spin square lattice
calculated for the five dimerization configurations. (a) Spin(1, 1

2), (b) spin( 3
2 ,

1
2), and (c) spin

( 3
2 , 1).



480 A Al-Omari and A H Nayyar

(c)

Figure 8. (Continued)

Heisenberg system on a chain and a square lattice taking variable exchange couplings based
on theansatzJ (a) = J/a, for three kinds of alternating-spin system, namely(1, 1

2), (
3
2,

1
2),

and( 3
2, 1). We have included different possibilities for dimerization in the case of a square

lattice. The ground-state energy and the staggered magnetization decrease continuously with
increasing dimerization in both 1D and 2D. In 2D, the plaquette configuration with dimerization
taking place simultaneously along both the principal square axes has markedly lower ground-
state energy and magnetization than the other configurations, (a), (b), (d), and (e). The plaquette
configuration stands out as the most favoured mode of dimerization. The energy gap also
corroborates the above conclusions. It has also been shown that the magnetic energy gain,
energy gap, and staggered magnetization follow a uniform dependence upon the dimerization
parameterδ asδv/|ln δ|: (i) in chains as well as in square lattices; (ii) in systems consisting of
different pairs of spinss1 ands2; (iii) for the magnetic energy gain, the energy gap, the energy
of the gapped magnetic excitation mode as well as for the sublattice magnetization; (iv) for
all of the configurations of the square lattice; and (v) over the entire range 06 δ < 1. The
variable exchange coupling also allows the energy of the gapped excitation spectrum to be
δ-dependent even in the linear spin-wave theory.
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